677 research outputs found

    Quadratic Word Equations with Length Constraints, Counter Systems, and Presburger Arithmetic with Divisibility

    Full text link
    Word equations are a crucial element in the theoretical foundation of constraint solving over strings, which have received a lot of attention in recent years. A word equation relates two words over string variables and constants. Its solution amounts to a function mapping variables to constant strings that equate the left and right hand sides of the equation. While the problem of solving word equations is decidable, the decidability of the problem of solving a word equation with a length constraint (i.e., a constraint relating the lengths of words in the word equation) has remained a long-standing open problem. In this paper, we focus on the subclass of quadratic word equations, i.e., in which each variable occurs at most twice. We first show that the length abstractions of solutions to quadratic word equations are in general not Presburger-definable. We then describe a class of counter systems with Presburger transition relations which capture the length abstraction of a quadratic word equation with regular constraints. We provide an encoding of the effect of a simple loop of the counter systems in the theory of existential Presburger Arithmetic with divisibility (PAD). Since PAD is decidable, we get a decision procedure for quadratic words equations with length constraints for which the associated counter system is \emph{flat} (i.e., all nodes belong to at most one cycle). We show a decidability result (in fact, also an NP algorithm with a PAD oracle) for a recently proposed NP-complete fragment of word equations called regular-oriented word equations, together with length constraints. Decidability holds when the constraints are additionally extended with regular constraints with a 1-weak control structure.Comment: 18 page

    Exploring athletic identity in elite-level English youth football: a cross-sectional approach.

    Get PDF
    This study is the first empirical investigation that has explored levels of athletic identity in elite-level English professional football. The importance of understanding athletes' psychological well-being within professional sport has been well documented. This is especially important within the professional football industry, given the high attrition rate (Anderson, G., & Miller, R. M. (2011). The academy system in English professional football: Business value or following the herd? University of Liverpool, Management School Research Paper Series. Retrieved from http://www.liv.ac.uk/managementschool/research/working%20papers/wp201143.pdf ) and distinct occupational practices (Roderick, M. (2006). The work of professional football. A labour of love? London: Routledge). A total of 168 elite youth footballers from the English professional football leagues completed the Athletic Identity Measurement Scale (AIMS). Multilevel modelling was used to examine the effect of playing level, living arrangements and year of apprentice on the total AIMS score and its subscales (i.e., social identity, exclusivity and negative affectivity). Football club explained 30% of the variance in exclusivity among players (P = .022). Mean social identity was significantly higher for those players in the first year of their apprenticeship compared to the second year (P = .025). All other effects were not statistically significant (P > .05). The novel and unique findings have practical implications in the design and implementation of career support strategies with respect to social identity. This may facilitate the maintenance of motivation over a 2-year apprenticeship and positively impact on performance levels within the professional football environment

    Automated task load detection with electroencephalography: towards passive brain–computer interfacing in robotic surgery

    Get PDF
    Automatic detection of the current task load of a surgeon in the theatre in real time could provide helpful information, to be used in supportive systems. For example, such information may enable the system to automatically support the surgeon when critical or stressful periods are detected, or to communicate to others when a surgeon is engaged in a complex maneuver and should not be disturbed. Passive brain–computer interfaces (BCI) infer changes in cognitive and affective state by monitoring and interpreting ongoing brain activity recorded via an electroencephalogram. The resulting information can then be used to automatically adapt a technological system to the human user. So far, passive BCI have mostly been investigated in laboratory settings, even though they are intended to be applied in real-world settings. In this study, a passive BCI was used to assess changes in task load of skilled surgeons performing both simple and complex surgical training tasks. Results indicate that the introduced methodology can reliably and continuously detect changes in task load in this realistic environment

    Can Subphotospheric Magnetic Reconnection Change the Elemental Composition in the Solar Corona?

    Get PDF
    Within the coronae of stars, abundances of those elements with low first ionization potential (FIP) often differ from their photospheric values. The coronae of the Sun and solar-type stars mostly show enhancements of low-FIP elements (the FIP effect) while more active stars such as M dwarfs have coronae generally characterized by the inverse-FIP effect (I-FIP). Here we observe patches of I-FIP effect solar plasma in AR 12673, a highly complex βγδ active region. We argue that the umbrae of coalescing sunspots, and more specifically strong light bridges within the umbrae, are preferential locations for observing I-FIP effect plasma. Furthermore, the magnetic complexity of the active region and major episodes of fast flux emergence also lead to repetitive and intense flares. The induced evaporation of the chromospheric plasma in flare ribbons crossing umbrae enables the observation of four localized patches of I-FIP effect plasma in the corona of AR 12673. These observations can be interpreted in the context of the ponderomotive force fractionation model which predicts that plasma with I-FIP effect composition is created by the refraction of waves coming from below the chromosphere. We propose that the waves generating the I-FIP effect plasma in solar active regions are generated by subphotospheric reconnection of coalescing flux systems. Although we only glimpse signatures of I-FIP effect fractionation produced by this interaction in patches on the Sun, on highly active M stars it may be the dominant process

    Status of Urinalysis in Nigeria: Way Forward

    Get PDF
    Urinalysis serves as a diagnostic procedure employed to assess the condition of a patient\u27s urinary system, encompassingthe examination of physical, chemical and microscopic attributes within a urine sample. In Nigeria, urinalysis stands asa frequently utilized diagnostic modality, widely accessible within health care facilities and is generally cost-effective.Nevertheless, despite its widespread availability, certain obstacles persist that hinder its effective utilization. Through thisreview, we aim to emphasize the significance of urinalysis in the diagnosis of kidney diseases within low-income nations,while also addressing the impediments that hinder its proper application. We also propose a range of requisite measuresfor enhancement

    Room-temperature ferromagnetism in graphite driven by 2D networks of point defects

    Full text link
    Ferromagnetism in carbon-based materials is appealing for both applications and fundamental science purposes because carbon is a light and bio-compatible material that contains only s and p electrons in contrast to traditional ferromagnets based on 3d or 4f electrons. Here we demonstrate direct evidence for ferromagnetic order locally at defect structures in highly oriented pyrolytic graphite (HOPG) with magnetic force microscopy and in bulk magnetization measurements at room temperature. Magnetic impurities have been excluded as the origin of the magnetic signal after careful analysis supporting an intrinsic magnetic behavior of carbon. The observed ferromagnetism has been attributed to originate from unpaired electron spins localized at grain boundaries of HOPG. Grain boundaries form two-dimensional arrays of point defects, where their spacing depends on the mutual orientation of two grains. Depending on the distance between these point defects, scanning tunneling spectroscopy of grain boundaries showed two intense split localized states for small distances between defects (< 4 nm) and one localized state at the Fermi level for large distances between defects (> 4 nm).Comment: 19 pages, 5 figure

    The academic backbone: longitudinal continuities in educational achievement from secondary school and medical school to MRCP(UK) and the specialist register in UK medical students and doctors

    Get PDF
    Background: Selection of medical students in the UK is still largely based on prior academic achievement, although doubts have been expressed as to whether performance in earlier life is predictive of outcomes later in medical school or post-graduate education. This study analyses data from five longitudinal studies of UK medical students and doctors from the early 1970s until the early 2000s. Two of the studies used the AH5, a group test of general intelligence (that is, intellectual aptitude). Sex and ethnic differences were also analyzed in light of the changing demographics of medical students over the past decades. Methods: Data from five cohort studies were available: the Westminster Study (began clinical studies from 1975 to 1982), the 1980, 1985, and 1990 cohort studies (entered medical school in 1981, 1986, and 1991), and the University College London Medical School (UCLMS) Cohort Study (entered clinical studies in 2005 and 2006). Different studies had different outcome measures, but most had performance on basic medical sciences and clinical examinations at medical school, performance in Membership of the Royal Colleges of Physicians (MRCP(UK)) examinations, and being on the General Medical Council Specialist Register. Results: Correlation matrices and path analyses are presented. There were robust correlations across different years at medical school, and medical school performance also predicted MRCP(UK) performance and being on the GMC Specialist Register. A-levels correlated somewhat less with undergraduate and post-graduate performance, but there was restriction of range in entrants. General Certificate of Secondary Education (GCSE)/O-level results also predicted undergraduate and post-graduate outcomes, but less so than did A-level results, but there may be incremental validity for clinical and post-graduate performance. The AH5 had some significant correlations with outcome, but they were inconsistent. Sex and ethnicity also had predictive effects on measures of educational attainment, undergraduate, and post-graduate performance. Women performed better in assessments but were less likely to be on the Specialist Register. Non-white participants generally underperformed in undergraduate and post-graduate assessments, but were equally likely to be on the Specialist Register. There was a suggestion of smaller ethnicity effects in earlier studies. Conclusions: The existence of the Academic Backbone concept is strongly supported, with attainment at secondary school predicting performance in undergraduate and post-graduate medical assessments, and the effects spanning many years. The Academic Backbone is conceptualized in terms of the development of more sophisticated underlying structures of knowledge ('cognitive capital’ and 'medical capital’). The Academic Backbone provides strong support for using measures of educational attainment, particularly A-levels, in student selection
    • …
    corecore